User Menu


Share with

Evolution of Network PDF Print E-mail

Evolution of Networking - Source (


AT&T designed its Dataphone, the first commercial modem, specifically for converting digital computer data to analog signals for transmission across its long distance network. Outside manufacturers incorporated Bell Laboratories´ digital data sets into commercial products. The development of equalization techniques and bandwidth-conserving modulation systems improved transmission efficiency in national and global systems.


Online transaction processing made its debut in IBM´s SABRE reservation system, set up for American Airlines. Using telephone lines, SABRE linked 2,000 terminals in 65 cities to a pair of IBM 7090 computers, delivering data on any flight in less than three seconds.


John van Geen of the Stanford Research Institute vastly improved the acoustically coupled modem. His receiver reliably detected bits of data despite background noise heard over long-distance phone lines. Inventors developed the acoustically coupled modem to connect computers to the telephone network by means of the standard telephone handset of the day.


Computer-to-computer communication expanded when the Department of Defense established four nodes on the ARPANET: the University of California Santa Barbara and UCLA, SRI International, and the University of Utah. Viewed as a comprehensive resource-sharing network, ARPANET´s designers set out with several goals: direct use of distributed hardware services; direct retrieval from remote, one-of-a-kind databases; and the sharing of software subroutines and packages not available on the users´ primary computer due to incompatibility of hardware or languages.


The first e-mail is sent. Ray Tomlinson of the research firm Bolt, Beranek and Newman sent the first e-mail when he was supposed to be working on a different project. Tomlinson, who is credited with being the one to decide on the "@" sign for use in e-mail, sent his message over a military network called ARPANET. When asked to describe the contents of the first email, Tomlinson said it was “something like "QWERTYUIOP"”.


Telenet, the first commercial packet-switching network and civilian equivalent of ARPANET, was born. The brainchild of Larry Roberts, Telenet linked customers in seven cities. Telenet represented the first value-added network, or VAN — so named because of the extras it offered beyond the basic service of linking computers.


The Queen of England sends her first e-mail. Elizabeth II, Queen of the United Kingdom, sends out an e-mail on March 26 from the Royal Signals and Radar Establishment (RSRE) in Malvern as a part of a demonstration of networking technology.


USENET established.  USENET was invented as a means for providing mail and file transfers using a communications standard known as UUCP.  It was developed as a joint project by Duke University and the University of North Carolina at Chapel Hill by graduate students Tom Truscott, Jim Ellis, and Steve Bellovin. USENET enabled its users to post messages and files that could be accessed and archived. It would go on to become one of the main areas for large-scale interaction for interest groups through the 1990s.

The first Multi-User Domain (or Dungeon), MUD1, is goes online. Richard Bartle and Roy Trubshaw, two students at the University of Essex, write a program that allows many people to play against each other on-line. MUDs become popular with college students as a means of adventure gaming and for socializing. By 1984, there were more than 100 active MUDs and variants around the world.


The first Multi-User Domain (or Dungeon), MUD1, is goes online. Richard Bartle and Roy Trubshaw, two students at the University of Essex, write a program that allows many people to play against each other on-line. MUDs become popular with college students as a means of adventure gaming and for socializing. By 1984, there were more than 100 active MUDs and variants around the world.


The modern Internet gained support when the National Science foundation formed the NSFNET, linking five supercomputer centers at Princeton University, Pittsburgh, University of California at San Diego, University of Illinois at Urbana-Champaign, and Cornell University. Soon, several regional networks developed; eventually, the government reassigned pieces of the ARPANET to the NSFNET. The NSF allowed commercial use of the Internet for the first time in 1991, and in 1995, it decommissioned the backbone, leaving the Internet as a self-supporting industry.

The NSFNET initially transferred data at 56 kilobits per second, an improvement on the overloaded ARPANET. Traffic continued to increase, though, and in 1987, ARPA awarded Merit Network Inc., IBM, and MCI a contract to expand the Internet by providing access points around the country to a network with a bandwidth of 1.5 megabits per second. In 1992, the network upgraded to T-3 lines, which transmit information at about 45 megabits per second.


The World Wide Web was born when Tim Berners-Lee, a researcher at CERN, the high-energy physics laboratory in Geneva, developed HyperText Markup Language. HTML, as it is commonly known, allowed the Internet to expand into the World Wide Web, using specifications he developed such as URL (Uniform Resource Locator) and HTTP (HyperText Transfer Protocol). A browser, such as Netscape or Microsoft Internet Explorer, follows links and sends a query to a server, allowing a user to view a site.

Berners-Lee based the World Wide Web on Enquire, a hypertext system he had developed for himself, with the aim of allowing people to work together by combining their knowledge in a global web of hypertext documents. With this idea in mind, Berners-Lee designed the first World Wide Web server and browser — available to the general public in 1991. Berners-Lee founded the W3 Consortium, which coordinates the World Wide Web's development.


The Mosaic web browser is released. Mosaic was the first commercial software that allowed graphical access to contents on the internet. Designed by Eric Bina and Marc Andreessen at the University of Illinois’s National Center for Supercomputer Applications, Mosaic was originally designed for a Unix system running X-windows. By 1994, Mosaic was available for several other operating systems such as the Mac OS, Windows and AmigaOS.



The Advanced Research Projects Agency Network (ARPANET) was the world's first operational packet switching network and the progenitor of what was to become the global Internet. The network was initially funded by the Advanced Research Projects Agency (ARPA, later DARPA) within the U.S. Department of Defense for use by its projects at universities and research laboratories in the US. The packet switching of the ARPANET was based on designs by British scientist Donald Davies and Lawrence Roberts of the Lincoln Laboratory.

In 1990, a mere 21 years after its creation, ARPANET, with its slow data transmission lines, was disbanded by the Department of Defense.



A means of connecting a computer to any other computer anywhere in the world via dedicated routers and servers. When two computers are connected over the Internet, they can send and receive all kinds of information such as text, graphics, voice, video, and computer programs.

No one owns Internet, although several organizations the world over collaborate in its functioning and development. The high-speed, fiber-optic cables (called backbones) through which the bulk of the Internet data travels are owned by telephone companies in their respective countries. The Internet grew out of the Advanced Research Projects Agency's Wide Area Network (called ARPANET). The development of hypertext based technology (called World Wide web, WWW, or just the Web) provided means of displaying text, graphics, and animations, and easy search and navigation tools that triggered Internet's explosive worldwide growth.

scroll back to top